
94-775/95-865 Lecture 6: 
Clustering Part II

George Chen



High-Level Idea of GMM
• Generative model that gives a hypothesized way in which data 

points are generated

In reality, data are unlikely generated the same way!

In reality, data points might not even be independent!

• Learning ("fitting") the parameters of a GMM
• Input: d-dimensional data points, your guess for k
• Output: 𝜋1, …, 𝜋k, 𝜇1, …, 𝜇k, 𝛴1, …, 𝛴k

• After learning a GMM:
• For any d-dimensional data point, can figure out probability 

of it belonging to each of the clusters
How do you turn this into a cluster assignment?



k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for 
where cluster centers are

Example: choose k of 
the points uniformly 

at random to be initial 
guesses for cluster 

centers
(There are many 

ways to make the 
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Repeat until convergence: 



k-means
Step 0: Pick k

Step 1: Pick guesses for 
where cluster centers are

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Repeat until convergence: 



(Rough Intuition) Learning a GMM
Step 0: Pick k

Step 1: Pick guesses for cluster means and covariances

Step 2: Compute probability of each point belonging to each of the 
k clusters

Step 3: Update cluster means and covariances carefully 
accounting for probabilities of each point belonging to each of the 
clusters

Repeat until convergence: 

This algorithm is called the Expectation-Maximization (EM) algorithm 
specifically for GMM's (and approximately does maximum likelihood)

(Note: EM by itself is a general algorithm not just for GMM's)



Relating k-means to GMM's

If the ellipses are all circles and have the same "skinniness" (e.g., 
in the 1D case it means they all have same std dev):

• k-means approximates the EM algorithm for GMM's

• Notice that k-means does a "hard" assignment of each point to 
a cluster, whereas the EM algorithm does a "soft" (probabilistic) 
assignment of each point to a cluster

Interpretation: We know when k-means should work! It should 
work when the data appear as if they're from a GMM with true 
clusters that "look like circles"



k-means should do well on this



But not on this



Learning and Interpreting a GMM

Demo



Automatically Choosing k

For k = 2, 3, … up to some user-specified max value:

Fit model using k

Compute a score for the model

Use whichever k has the best score

No single way of choosing k is the “best” way

But what score function should we use?



Here’s an example of a score 
function you don’t want to use

But hey it’s worth a shot



Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Cluster 2



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Residual sum of squares for cluster 1:  
sum of squared purple lengths

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Residual sum of squares for cluster 1:

Measure distance 
from each point to 
its cluster center

RSS1 =
∑

x∈cluster 1

∥x − µ1∥2



Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Cluster 2

Repeat similar calculation 
for other cluster

Residual sum of squares for cluster 2:

Measure distance 
from each point to 
its cluster center

RSS2 =
∑

x∈cluster 2

∥x − µ2∥2



Repeat similar calculation 
for other cluster

Measure distance 
from each point to 
its cluster center

Residual Sum of Squares

Cluster 1

Cluster 2

In general if there are k clusters:

Remark: k-means tries to minimize RSS  
(it does so approximately, with no guarantee of optimality)

RSS only really makes sense for clusters that look like circles

RSS = RSS1 + RSS2 =
∑

x∈cluster 1

∥x − µ1∥2 +
∑

x∈cluster 2

∥x − µ2∥2

RSS =
k∑

g=1

RSSg =
k∑

g=1

∑

x∈cluster g

∥x − µg∥2



Why is minimizing RSS a bad 
way to choose k?

What happens when k is equal to the number of data points?



A Good Way to Choose k

Want to also measure between-cluster variation

RSS measures within-cluster variation

W = RSS =
k∑

g=1

RSSg =
k∑

g=1

∑

x∈cluster g

∥x − µg∥2

B =
k∑

g=1

(# points in cluster g)∥µg − µ∥2

mean of all points
A good score function to use for choosing k:

Pick k with highest CH(k)

n = total # points
(Choose k among 2, 3, … up to 
pre-specified max)

Called the CH index 
[Calinski and Harabasz 1974]

CH(k ) =
B · (n − k )
W · (k − 1)



Automatically Choosing k

Demo


